3 research outputs found

    Trees over Infinite Structures and Path Logics with Synchronization

    Full text link
    We provide decidability and undecidability results on the model-checking problem for infinite tree structures. These tree structures are built from sequences of elements of infinite relational structures. More precisely, we deal with the tree iteration of a relational structure M in the sense of Shelah-Stupp. In contrast to classical results where model-checking is shown decidable for MSO-logic, we show decidability of the tree model-checking problem for logics that allow only path quantifiers and chain quantifiers (where chains are subsets of paths), as they appear in branching time logics; however, at the same time the tree is enriched by the equal-level relation (which holds between vertices u, v if they are on the same tree level). We separate cleanly the tree logic from the logic used for expressing properties of the underlying structure M. We illustrate the scope of the decidability results by showing that two slight extensions of the framework lead to undecidability. In particular, this applies to the (stronger) tree iteration in the sense of Muchnik-Walukiewicz.Comment: In Proceedings INFINITY 2011, arXiv:1111.267

    Transition Graphs of Rewriting Systems over Unranked Trees

    No full text
    We investigate algorithmic properties of infinite transition graphs that are generated by rewriting systems over unranked trees. Two kinds of such rewriting systems are studied. For the first, we construct a reduction to ranked (binary) trees via an encoding and to standard ground tree rewriting, thus showing that the generated classes of transition graphs coincide. In the second rewriting formalism, we use subtree rewriting combined with a new operation called flat prefix rewriting and show that strictly more transition graphs are obtained while the reachability problem remains decidable.
    corecore